EBERHARD KARLS TÜBINGEN

Sharpness-Aware Minimization

Optimization method designed to implicitly maximize the flatness in weight space during gradient descent:

$$\min_{\mathbf{w}} \max_{\|\epsilon\|_p < \rho} \mathcal{L}(\mathbf{w} + \epsilon)$$

In practice: approximate inner maximization with 1-step and use $\nabla \mathcal{L}(\mathbf{w} + \epsilon)$ for batch-wise weight update instead of $\nabla \mathcal{L}(\mathbf{w}) \longrightarrow$ resulting SAM-algorithm requires additional forward-backward pass

Adaptive variant (ASAM) has objective:

$$\min_{\mathbf{w}} \max_{||T_w^{-1}\epsilon||_p < \rho} \mathcal{L}(\mathbf{w} + \epsilon)$$

- \blacktriangleright T_w is a normalization operator (diagonal matrix) making the perturbation (partly) invariant to rescaling of the parameters
- The 1-step solution of the inner maximization

$$\epsilon = \rho \frac{T_w^2 \nabla \mathcal{L}(\mathbf{w})}{||T_w \nabla \mathcal{L}(\mathbf{w})||_2} \text{ for } p = 2$$

$$\epsilon = \rho T_w \operatorname{sign}(\nabla \mathcal{L}(\mathbf{w}))$$
 for $p = \infty$

Justifications for empirical success of SAM and its variants remain inconclusive

SAM-ON

Normalization layers normalize input x with mean μ and variance σ^2

$$Norm(x) = \gamma \times \frac{x - \mu}{\sigma} + \beta$$

- We propose SAM-ON, which perturbs only γ and β (typically 0.1% of all parameters) in the adversarial step of SAM
- For ResNets with BatchNorm and VisionTransformers with Layernorm we observe that SAM-ON either matches the performance of the conventional SAM algorithm (called SAM-all), or even outperforms it

Maximilian Müller^{*}, Tiffany Vlaar⁺, David Rolnick⁺, Matthias Hein^{*} *University of Tübingen and Tübingen AI Center, +McGill University and Mila - Quebec AI Institute Normalization Layers Are all that **Sharpness-Aware Minimization Needs**

ResNets on CIFAR-100

SAM-ON (dashed) improves generalization performance across a range of SAM-variants compared to SAM-all and vanilla SGD (shown is a WRN28-10, more models in paper!)

omitting the normalization layers in the perturbation (no-norm, dotted) can harm training

Central Message

Applying Sharpness-Aware Minimization only to the normalization layers of a network typically enhances its performance

ViT-S/32 on ImageNet

For AdamW as base optimizer, SAM-ON improves strongly over the vanilla optimizer and either improves over SAM-all or performs on par

	For Lion as base optimizer, SAM-ON always improves over SAM-all and the vanilla optimizer							
		AdamW			Lion			
		vanilla	SAM-all	SAM-ON	vanilla	SAM-all	SAM-ON	
	ImageNet	$66.89^{\pm 0.04}$	$71.47^{\pm 0.12}$	$71.37^{\pm 0.026}$	$68.20^{\pm 0.02}$	$71.90^{\pm 0.19}$	$72.64^{\pm 0.14}$	
	ImageNetV2	$48.43^{\pm 0.48}$	$53.61^{\pm 0.11}$	$53.67^{\pm 0.29}$	$50.20^{\pm 0.01}$	$54.20^{\pm 0.27}$	55.38 ±0.09	
OOD	ImageNetR	$25.04^{\pm 0.04}$	$31.56^{\pm 0.48}$	32.98 ^{±0.10}	$25.61^{\pm 0.04}$	$32.17^{\pm 0.41}$	33.87 ± 0.47	
	ImageNetA	$4.72^{\pm 0.15}$	$5.21^{\pm 0.05}$	$5.19^{\pm 0.18}$	$5.45^{\pm 0.19}$	$5.01^{\pm 0.22}$	5.77 ± 0.21	
	ImageNetSketch	$13.68^{\pm 0.24}$	$18.50^{\pm 0.44}$	19.35 ± 0.17	$14.47^{\pm 0.02}$	$18.22^{\pm 0.34}$	20.48 ± 0.12	
	ObjectNet	$11.32^{\pm 0.39}$	$13.75^{\pm 0.12}$	$13.55^{\pm 0.25}$	$12.06^{\pm 0.02}$	$13.93^{\pm 0.40}$	15.35 ± 0.13	
adv. rob.	$\ell_2, \epsilon = 0.25$	$19.67^{\pm 0.47}$	$37.53^{\pm 0.69}$	41.16 ±0.24	$22.01^{\pm 0.78}$	$38.52^{\pm 0.66}$	43.12 ± 0.97	
	$\ell_2, \epsilon = 0.50$	$5.47^{\pm 0.18}$	$17.71^{\pm 0.61}$	22.72 ± 0.25	$6.63^{\pm 0.46}$	$19.03^{\pm 0.92}$	24.27 ± 1.34	
	$\ell_{\infty}, \epsilon = 0.25/255$	$33.45^{\pm 0.80}$	$48.08^{\pm0.14}$	49.34 ± 0.08	$35.31^{\pm 0.08}$	$49.57^{\pm 0.60}$	51.37 ± 0.99	
	$\ell_{\infty}, \epsilon = 0.5/255$	$14.98^{\pm 0.18}$	$29.68^{\pm 0.09}$	32.46 ±0.15	$15.86^{\pm 0.13}$	$31.68^{\pm 0.62}$	34.23 ± 1.73	

Sharpness

per method for a WRN-28 on CIFAR-100.

	SGD	SAM-all	SAM-ON
Test Accuracy (%)	$80.71^{\pm 0.2}$	$83.11^{\pm 0.3}$	84.19 ^{±0.2}
. 20 steps, $\rho = 0.003$	$0.071^{\pm 0.000}$	$0.048^{\pm 0.001}$	$10.090^{\pm 0.005}$
א 20 steps, $\rho = 0.007$	$0.433^{\pm 0.002}$	$0.309^{\pm 0.011}$	$0.585^{\pm 0.018}$
r_{\circ} 1 step, $\rho = 0.01$	$0.204^{\pm 0.005}$	$0.183^{\pm 0.002}$	$20.315^{\pm0.010}$
$^{\circ}$ 1 step, $\rho = 0.03$	$0.809^{\pm 0.003}$	$0.769^{\pm 0.017}$	$70.843^{\pm 0.007}$

Other sparse perturbation approaches

Other sparse perturbation approaches are less effective than SAM-ON, especially when probed at very high sparsity levels.

	SAM	SAM-ON	Random Mask	SSA	M-F
Sparsity	0%	99.95%	99.95%	50%	99.95%
Test Accuracy (%)	83.11±0.3	84.19 ±0.2	80.97±0.2	83.94±0.1	83.14±0.1

SAM-ON induces a parameter shift

For SAM-ON the distribution of γ shifts towards larger values

Computational savings

SAM-ON reduces the computational load in practice, and further gains might be achieved by perturbing the normalization layers of selected blocks (B1-B3)

Paper & code

SAM-ON models are sharper, yet generalize better. Shown is logit-normalized ℓ_{∞} *m*-sharpness, averaged over three models

	WRN-28				
B2+B3		SAM-O	N		
SA <mark>M-ON</mark>	B3			SAM-	all
SAM	-ON B2				
		SAM-ON	I B1		
1. 2 ime (nor	4 1. malized k	6 1. by SGD tir	8 ne)	2.	0

Find paper and code at github.com/mueller-mp/SAM-ON.