WHAT CAN LINEAR INTERPOLATION OF NEURAL NETWORK LOSS LANDSCAPES TELL US?

Tiffany Vlaar (University of Edinburgh) and Jonathan Frankle (MosaicML) ICML 2022

RESEARCH QUESTION

(Goodfellow et al., 2015)

"Networks violating the [Monotonic Linear Interpolation] property can be produced systematically, by encouraging the weights to move far from initialization."

$$\begin{split} \theta_{\alpha}^{(\ell)} &= (1-\alpha)\theta_0^{(\ell)} + \alpha \theta_f^{(\ell)}, \\ \theta_{\alpha}^{(k)} &= \theta_f^{(k)}, \ k \neq \ell \end{split} \tag{Chas}$$

Base Model: ResNet-18 architecture, CIFAR-10 data.

Tiffany.Vlaar@ed.ac.uk jonathan@mosaicml.com

"pre-trained weights guide the optimiza-

"Large distances moved in weight space

Set-18, Data: CIFAR-10.	
Method	Test accuracy (%)
Train from scratch	92.2 ±0.2
T-All but RI-1	91.8 ±0.2
T-All but RI-2	91.8 ± 0.2
T-All but RI-3	92.4 ± 0.2
T-All but RI-4	91.0 ± 0.3