MULTIRATE TRAINING OF NEURAL NETWORKS Tiffany Vlaar^{*} and Ben Leimkuhler

MOTIVATION

Multirate scheme (green) trained on both time scales ($h_F = 0.004$, $h_S = 0.1$) is able to memorize the patches and obtain high accuracy on the clean data, while fixed learning rate approaches (blue/orange) fail to do both.

MULTIRATE SGD

Notation: parameters $\theta = (\theta_F, \theta_S) \in \mathbb{R}^n$, momenta $p = (p_F, p_S) \in \mathbb{R}^n$, slow learning rate $h_S = h$, fast learning rate $h_F = h/k$, momentum hyperparameter μ , and neural network loss $\mathcal{L}(\theta_S, \theta_F)$ evaluated on a minibatch.

No linear drift:

With linear drift:

$$p_{S} = \mu p_{S} + \nabla_{\theta_{S}} \mathcal{L}(\theta_{S}, \theta_{F})$$

$$\theta_{S} = \theta_{S} - h p_{S}$$
for $i = 1, 2, ..., k$

$$p_{F} = \mu p_{F} + \nabla_{\theta_{F}} \mathcal{L}(\theta_{S}, \theta_{F})$$

$$\theta_{F} = \theta_{F} - \frac{h}{k} p_{F}$$

$$p_{S} = \mu p_{S} + \nabla_{\theta_{S}} \mathcal{L}(\theta_{S}, \theta_{F})$$
for $i = 1, 2, ..., k$

$$p_{F} = \mu p_{F} + \nabla_{\theta_{F}} \mathcal{L}(\theta_{S}, \theta_{F})$$

$$\theta_{F} = \theta_{F} - \frac{h}{k} p_{F}$$

$$\Rightarrow \qquad \theta_{S} = \theta_{S} - \frac{h}{k} p_{S}$$

We find that the use of linear drift further enhances performance for our applications. In the paper we provide ablation studies and a **convergence analysis compared to vanilla SGD**.

HOW TO PARTITION?

Need to partition neural network parameters into fast and slow parts. You have a choice!

Suggestions:	Inspiration:
	Are all layers created equal? [Zhang et al., 2019].
• Layer-wise	Partitioned integrators for NN training [Leimkuhler, Mat
	Different layers are more data-hungry [Bansal et al., 2021
	Layerwise sensitivity to initialization & optimizer settings
 Random subgroups 	Dropout [Srivastava et al., 2014] and DropConnect [Wan

ICML 2022

thews, TV, 2019]. [TV & Frankle, 2021]. et al., 2013].

TRANSFER LEARNING - LAYERWISE PARTITIONING

Inspiration: Early layers capture general features, later layers more task-specific knowledge [Yosinski et al., 2014; Hao et al., 2019; Raghu et al., 2019; Neyshabur et al., 2020]. MD: r-RESPA [Tuckerman et al. 1991, 1992].

Idea: Get **computational speed-up** by splitting net in two parts: final layer(s) as the fast part, rest is slow part. Only need to compute gradients for full network every *k* steps!

For example, for a ResNet-34 architecture fast parameters are only 0.024% of total.

Can train in half the time, while maintaining the same generalization performance! Complexity analysis and ablation studies in paper.

REGULARIZATION - RANDOM SUBGROUPS PARTITIONING

Procedure for this application: - θ_S are randomly selected subsets of NN weights. - Set θ_S to zero during fast parameter update. - Every *k* optimization steps randomly select new θ_S .

Small transformer trained on Penn Treebank data.

FUTURE WORK

- Other partitioning choices.
- Hybrid training schemes.
- Popular practices.
- Different base algorithm.

THE UNIVERSITY of EDINBURGH

