This is the corrigendum for "Multirate Training of Neural Networks" which appeared in: https://proceedings. mlr.press/v162/vlaar22b.html. The authors wish to thank Katerina Karoni for providing valuable comments on the original proof of Theorem B. 4 that led to the creation of this corrigendum. To make the document self-contained we provide the full proof below. The updated paper can be found on the arXiv: https://arxiv.org/abs/2106.10771. Please do not hesitate to contact the authors for any further questions regarding this file or the paper itself.

Recall our main assumptions:
Assumption B.1. We assume function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be L-smooth, i.e., f is continuously differentiable and its gradient is Lipschitz continuous with Lipschitz constant $L>0$

$$
\begin{equation*}
\|\nabla f(\varphi)-\nabla f(\theta)\|_{2} \leq L\|\varphi-\theta\|_{2}, \forall \theta, \varphi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Assumption B.2. We assume that the second moment of the stochastic gradient is bounded above, i.e., there exists a constant M for any sample x_{i} such that

$$
\begin{equation*}
\left\|\nabla f_{x_{i}}(\theta)\right\|_{2}^{2} \leq M, \quad \forall \theta \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Lemma B.3. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth then $\forall \theta, \varphi \in \mathbb{R}^{n}$

$$
\begin{equation*}
\left|f(\varphi)-\left(f(\theta)+\nabla f(\theta)^{T}(\varphi-\theta)\right)\right| \leq \frac{L}{2}\|\varphi-\theta\|_{2}^{2} \tag{3}
\end{equation*}
$$

As a starting point for our layer-wise multirate approach we partition the parameters as $\theta=\left\{\theta_{F}, \theta_{S}\right\}$, with $\theta_{F} \in \mathbb{R}^{n_{F}}, \theta_{S} \in$ $\mathbb{R}^{n_{S}}, n=n_{F}+n_{S}$. The multirate method update for base algorithm SGD is

$$
\begin{equation*}
\theta_{\ell}^{t+1}=\theta_{\ell}^{t}-h \nabla f_{\ell, x_{i}}\left(\theta^{t}\right) \tag{4}
\end{equation*}
$$

where $\ell \in\{F, S\}, \theta_{\ell}^{t}$ are the parameter groups at iteration t, h is the stepsize, and $\nabla f_{\ell, x_{i}}$ denotes the gradient of the loss of the i th training example for parameters θ_{ℓ}^{t}, where $\nabla f_{F, x_{i}}\left(\theta^{t}\right)=\nabla f_{F, x_{i}}\left(\theta^{t}\right)$ and with linear drift: for any $t \in[\tau, \tau+k-1]$, where τ is divisible by $k, \nabla f_{S, x_{i}}\left(\theta^{t}\right)=\nabla f_{S, x_{i}}\left(\theta^{\tau}\right)$. The total number of iterations T is always set to be a multiple of k. In the following we denote $\nabla f_{x_{i}}\left(\theta^{t}\right)=\left\{\nabla f_{F, x_{i}}\left(\theta^{t}\right), \nabla f_{S, x_{i}}\left(\theta^{t}\right)\right\}$ and $g_{x_{i}}\left(\theta^{t}\right)=\left\{\nabla f_{F, x_{i}}\left(\theta^{t}\right), \nabla f_{S, x_{i}}\left(\theta^{\tau}\right)\right\}$, such that the parameter update rule becomes

$$
\begin{equation*}
\theta^{t+1}=\theta^{t}-h g_{x_{i}}\left(\theta^{t}\right) \tag{5}
\end{equation*}
$$

Theorem B.4. Assume that Assumptions B.1 and B. 2 hold. Then

$$
\begin{equation*}
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(\theta^{0}\right)-f\left(\theta^{*}\right)\right)}{h T}+h L M \ell\left(\frac{1}{3} h L k^{2}+1\right) \tag{6}
\end{equation*}
$$

where θ^{*} is the optimal solution to $f(\theta)$.
Proof of Theorem B.4. Because f is L-smooth, from Lemma B. 3 it follows that

$$
\begin{align*}
f\left(\theta^{t+1}\right) & \leq f\left(\theta^{t}\right)+\nabla f\left(\theta^{t}\right) \cdot\left(\theta^{t+1}-\theta^{t}\right)+\frac{L}{2}\left\|\theta^{t+1}-\theta^{t}\right\|_{2}^{2} \\
& \leq f\left(\theta^{t}\right)-h \nabla f\left(\theta^{t}\right) \cdot g_{x_{i}}\left(\theta^{t}\right)+\frac{h^{2} L}{2}\left\|g_{x_{i}}\left(\theta^{t}\right)\right\|_{2}^{2} \tag{7}
\end{align*}
$$

Taking the double expectation gives (because of unbiased gradient $\mathbb{E}_{x_{i} \sim p(X)}\left[g_{x_{i}}\left(\theta^{t}\right)\right]=g\left(\theta^{t}\right)$ and Assumption B.2):

$$
\mathbb{E}\left[f\left(\theta^{t+1}\right)-f\left(\theta^{t}\right)\right] \leq-h \mathbb{E}\left[\nabla f\left(\theta^{t}\right) \cdot g\left(\theta^{t}\right)\right]+h^{2} L M \ell / 2
$$

for number of parameter groups ℓ and where $\mathbb{E}[.$.$] is the expectation with respect to the parameters. So in T$ iterations we have θ^{T} such that (using a telescoping sum):

$$
\begin{align*}
& \qquad f\left(\theta^{*}\right)-f\left(\theta^{0}\right) \leq \mathbb{E}\left[f\left(\theta^{T}\right)\right]-f\left(\theta^{0}\right) \leq-\underbrace{h \sum_{t=0}^{T-1} \mathbb{E}\left[\nabla f\left(\theta^{t}\right) \cdot g\left(\theta^{t}\right)\right]}+\frac{h^{2} L M \ell}{2} T . \tag{8}\\
& \text { For term } \mathcal{A} \text { we get: } \quad \mathcal{A}=\sum_{t=0}^{T-1} a_{t}=\sum_{t=0}^{k-1} a_{t}+\sum_{t=k}^{2 k-1} a_{t}+\cdots+\sum_{t=\tau}^{\tau+k-1} a_{t}+\cdots+\sum_{t=T-k}^{T-1} a_{t}, \tag{9}
\end{align*}
$$

where $\sum_{t=\tau}^{\tau+k-1} a_{t}$ is given by

$$
\begin{aligned}
\sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\nabla f\left(\theta^{t}\right) \cdot g\left(\theta^{t}\right)\right] & =\sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\left\{\nabla f_{F}\left(\theta^{t}\right), \nabla f_{S}\left(\theta^{t}\right)\right\} \cdot\left\{\nabla f_{F}\left(\theta^{t}\right), \nabla f_{S}\left(\theta^{\tau}\right)\right\}\right] \\
& =\sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\left\|\nabla f_{F}\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\nabla f_{S}\left(\theta^{t}\right) \cdot\left(\nabla f_{S}\left(\theta^{\tau}\right)-\nabla f_{S}\left(\theta^{t}\right)+\nabla f_{S}\left(\theta^{t}\right)\right)\right] \\
& =\sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\underbrace{\sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\nabla f_{S}\left(\theta^{t}\right) \cdot\left(\nabla f_{S}\left(\theta^{\tau}\right)-\nabla f_{S}\left(\theta^{t}\right)\right)\right]}_{\mathcal{B}}
\end{aligned}
$$

Because $x y \leq \frac{1}{2}\|x\|_{2}^{2}+\frac{1}{2}\|y\|_{2}^{2}$ (combination of Cauchy-Schwarz and Young's inequality) (gives 1st inequality) and Assumption B. 1 (gives 2nd inequality) we get for term \mathcal{B}

$$
\begin{aligned}
\mathcal{B} & \leq \frac{1}{2} \sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\left\|\nabla f_{S}\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\frac{1}{2} \sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\left\|\nabla f_{S}\left(\theta^{\tau}\right)-\nabla f_{S}\left(\theta^{t}\right)\right\|_{2}^{2}\right] \\
& \leq \frac{1}{2} \sum_{t=\tau}^{\tau+k-1} \mathbb{E}\left[\left\|\nabla f_{S}\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\frac{L^{2}}{2} \mathbb{E} \underbrace{\sum_{t=\tau+1}^{\tau+k-1}\left\|\theta^{\tau}-\theta^{t}\right\|_{2}^{2}}_{\mathcal{C}}]
\end{aligned}
$$

We get for term \mathcal{C} from Eq. (4) (gives 2nd equality), $\left\|a_{1}+\cdots+a_{m}\right\|_{2}^{2} \leq m\left(\left\|a_{1}\right\|_{2}^{2}+\cdots+\left\|a_{m}\right\|_{2}^{2}\right)$ (gives 1st inequality), Assumption B. 2 (gives 2nd inequality), and $k>1$ (final inequality):

$$
\begin{aligned}
\mathcal{C} & =\left\|\theta^{\tau}-\theta^{\tau+1}\right\|_{2}^{2}+\left\|\theta^{\tau}-\theta^{\tau+2}\right\|_{2}^{2}+\cdots+\left\|\theta^{\tau}-\theta^{\tau+k-1}\right\|_{2}^{2} \\
& =h^{2}\left(\left\|g_{x_{i}}\left(\theta^{\tau}\right)\right\|_{2}^{2}+\left\|g_{x_{i}}\left(\theta^{\tau}\right)+g_{x_{i}}\left(\theta^{\tau+1}\right)\right\|_{2}^{2}+\cdots+\left\|g_{x_{i}}\left(\theta^{\tau}\right)+\cdots+g_{x_{i}}\left(\theta^{\tau+k-2}\right)\right\|_{2}^{2}\right) \\
& \leq h^{2}\left(\sum_{m=1}^{k-1} m\left\|g_{x_{i}}\left(\theta^{\tau}\right)\right\|_{2}^{2}+\sum_{m=2}^{k-1} m\left\|g_{x_{i}}\left(\theta^{\tau+1}\right)\right\|_{2}^{2}+\cdots+(k-1)\left\|g_{x_{i}}\left(\theta^{\tau+k-2}\right)\right\|_{2}^{2}\right) \\
& \leq h^{2} M \ell\left((k-1)^{2}+(k-2)^{2}+\cdots+1\right)=h^{2} M \ell \sum_{m=1}^{k-1} m^{2}=h^{2} M \ell\left(k / 6-k^{2} / 2+k^{3} / 3\right) \leq h^{2} M \ell k^{3} / 3
\end{aligned}
$$

So overall for term $-h \mathcal{A}$ we get

$$
\begin{align*}
-h \sum_{t=0}^{T-1} \mathbb{E}\left[\nabla f\left(\theta^{t}\right) \cdot g\left(\theta^{t}\right)\right] & \leq-h \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right]+h\left|\sum_{\tau} \mathcal{B}\right| \\
& \leq-\frac{h}{2} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\frac{1}{6} h^{3} L^{2} M \ell k^{2} T \tag{10}
\end{align*}
$$

Substituting this into Eq. (8) gives

$$
\begin{align*}
f\left(\theta^{*}\right)-f\left(\theta^{0}\right) & \leq \mathbb{E}\left[f\left(\theta^{T}\right)\right]-f\left(\theta^{0}\right) \\
& \leq-\frac{h}{2} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\frac{1}{6} h^{3} L^{2} M \ell k^{2} T+\frac{h^{2} L M \ell}{2} T \\
& =-\frac{h}{2} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right]+\frac{1}{2} h^{2} L M \ell T\left(\frac{1}{3} h L k^{2}+1\right) \tag{11}
\end{align*}
$$

This gives Theorem B. 4

$$
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\theta^{t}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(\theta^{0}\right)-f\left(\theta^{*}\right)\right)}{h T}+h L M \ell\left(\frac{1}{3} h L k^{2}+1\right)
$$

