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Recall our main assumptions:
Assumption B.1. We assume function f : Rn → R to be L-smooth, i.e., f is continuously differentiable and its gradient is
Lipschitz continuous with Lipschitz constant L > 0

∥∇f(φ)−∇f(θ)∥2 ≤ L∥φ− θ∥2, ∀θ, φ ∈ Rn. (1)

Assumption B.2. We assume that the second moment of the stochastic gradient is bounded above, i.e., there exists a
constant M for any sample xi such that

∥∇fxi
(θ)∥22 ≤ M, ∀θ ∈ Rn. (2)

Lemma B.3. If f : Rn → R is L-smooth then ∀θ, φ ∈ Rn

|f(φ)− (f(θ) +∇f(θ)T (φ− θ))| ≤ L

2
∥φ− θ∥22. (3)

As a starting point for our layer-wise multirate approach we partition the parameters as θ = {θF , θS}, with θF ∈ RnF , θS ∈
RnS , n = nF + nS . The multirate method update for base algorithm SGD is

θt+1
ℓ = θtℓ − h∇fℓ,xi(θ

t), (4)

where ℓ ∈ {F, S}, θtℓ are the parameter groups at iteration t, h is the stepsize, and ∇fℓ,xi denotes the gradient of the loss of
the ith training example for parameters θtℓ, where ∇fF,xi(θ

t) = ∇fF,xi(θ
t) and with linear drift: for any t ∈ [τ, τ + k− 1],

where τ is divisible by k, ∇fS,xi
(θt) = ∇fS,xi

(θτ ). The total number of iterations T is always set to be a multiple of k.
In the following we denote ∇fxi

(θt) = {∇fF,xi
(θt),∇fS,xi

(θt)} and gxi
(θt) = {∇fF,xi

(θt),∇fS,xi
(θτ )}, such that the

parameter update rule becomes

θt+1 = θt − hgxi
(θt). (5)

Theorem B.4. Assume that Assumptions B.1 and B.2 hold. Then

1

T

T−1∑
t=0

E
[
∥∇f(θt)∥22

]
≤ 2(f(θ0)− f(θ∗))

hT
+ hLMℓ

(
1

3
hLk2 + 1

)
, (6)

where θ∗ is the optimal solution to f(θ).

Proof of Theorem B.4. Because f is L-smooth, from Lemma B.3 it follows that

f(θt+1) ≤ f(θt) +∇f(θt) · (θt+1 − θt) +
L

2
∥θt+1 − θt∥22

≤ f(θt)− h∇f(θt) · gxi(θ
t) +

h2L

2

∥∥gxi(θ
t)
∥∥2
2

(7)

Taking the double expectation gives (because of unbiased gradient Exi∼p(X)[gxi
(θt)] = g(θt) and Assumption B.2):

E[f(θt+1)− f(θt)] ≤ −hE
[
∇f(θt) · g(θt)

]
+ h2LMℓ/2

for number of parameter groups ℓ and where E[..] is the expectation with respect to the parameters. So in T iterations we
have θT such that (using a telescoping sum):

f(θ∗)− f(θ0) ≤ E[f(θT )]− f(θ0) ≤ −h

T−1∑
t=0

E
[
∇f(θt) · g(θt)

]
︸ ︷︷ ︸

A

+
h2LMℓ

2
T. (8)

For term A we get: A =

T−1∑
t=0

at =

k−1∑
t=0

at +

2k−1∑
t=k

at + · · ·+
τ+k−1∑
t=τ

at + · · ·+
T−1∑

t=T−k

at, (9)

https://proceedings.mlr.press/v162/vlaar22b.html
https://proceedings.mlr.press/v162/vlaar22b.html
https://arxiv.org/abs/2106.10771


where
∑τ+k−1

t=τ at is given by
τ+k−1∑
t=τ

E
[
∇f(θt) · g(θt)

]
=

τ+k−1∑
t=τ

E
[
{∇fF (θ

t),∇fS(θ
t)} · {∇fF (θ

t),∇fS(θ
τ )}
]

=

τ+k−1∑
t=τ

E
[
∥∇fF (θ

t)∥22
]
+

τ+k−1∑
t=τ

E[∇fS(θ
t) · (∇fS(θ

τ )−∇fS(θ
t) +∇fS(θ

t))]

=

τ+k−1∑
t=τ

E
[
∥∇f(θt)∥22

]
+

τ+k−1∑
t=τ

E[∇fS(θ
t) · (∇fS(θ

τ )−∇fS(θ
t))]︸ ︷︷ ︸

B

.

Because xy ≤ 1
2∥x∥

2
2 + 1

2∥y∥
2
2 (combination of Cauchy-Schwarz and Young’s inequality) (gives 1st inequality) and

Assumption B.1 (gives 2nd inequality) we get for term B

B ≤ 1

2

τ+k−1∑
t=τ

E
[
∥∇fS(θ

t)∥22
]
+

1

2

τ+k−1∑
t=τ

E
[
∥∇fS(θ

τ )−∇fS(θ
t)∥22

]
≤ 1

2

τ+k−1∑
t=τ

E
[
∥∇fS(θ

t)∥22
]
+

L2

2
E

[
τ+k−1∑
t=τ+1

∥θτ − θt∥22︸ ︷︷ ︸
C

]
.

We get for term C from Eq. (4) (gives 2nd equality), ∥a1 + · · ·+ am∥22 ≤ m(∥a1∥22 + · · ·+ ∥am∥22) (gives 1st inequality),
Assumption B.2 (gives 2nd inequality), and k > 1 (final inequality):

C = ∥θτ − θτ+1∥22 + ∥θτ − θτ+2∥22 + · · ·+ ∥θτ − θτ+k−1∥22
= h2

(
∥gxi(θ

τ )∥22 +
∥∥gxi

(θτ ) + gxi
(θτ+1)

∥∥2
2
+ · · ·+

∥∥gxi
(θτ ) + · · ·+ gxi

(θτ+k−2)
∥∥2
2

)
≤ h2

(
k−1∑
m=1

m ∥gxi
(θτ )∥22 +

k−1∑
m=2

m
∥∥ gxi

(θτ+1)
∥∥2
2
+ · · ·+ (k − 1)

∥∥gxi
(θτ+k−2)

∥∥2
2

)

≤ h2Mℓ
(
(k − 1)2 + (k − 2)2 + · · ·+ 1

)
= h2Mℓ

k−1∑
m=1

m2 = h2Mℓ
(
k/6− k2/2 + k3/3

)
≤ h2Mℓk3/3.

So overall for term −hA we get

−h

T−1∑
t=0

E[∇f(θt) · g(θt)] ≤ −h

T−1∑
t=0

E
[
∥∇f(θt)∥22

]
+ h

∣∣∣∣∣∑
τ

B

∣∣∣∣∣
≤ −h

2

T−1∑
t=0

E
[
∥∇f(θt)∥22

]
+

1

6
h3L2Mℓk2T. (10)

Substituting this into Eq. (8) gives

f(θ∗)− f(θ0) ≤ E[f(θT )]− f(θ0)

≤ −h

2

T−1∑
t=0

E
[
∥∇f(θt)∥22

]
+

1

6
h3L2Mℓk2T +

h2LMℓ

2
T

= −h

2

T−1∑
t=0

E
[
∥∇f(θt)∥22

]
+

1

2
h2LMℓT

(
1

3
hLk2 + 1

)
. (11)

This gives Theorem B.4

1

T

T−1∑
t=0

E
[
∥∇f(θt)∥22

]
≤ 2(f(θ0)− f(θ∗))

hT
+ hLMℓ

(
1

3
hLk2 + 1

)
.


